Structure of Human Complement C8, a Precursor to Membrane Attack

نویسندگان

  • Doryen Bubeck
  • Pietro Roversi
  • Rossen Donev
  • B. Paul Morgan
  • Oscar Llorca
  • Susan M. Lea
چکیده

Complement component C8 plays a pivotal role in the formation of the membrane attack complex (MAC), an important antibacterial immune effector. C8 initiates membrane penetration and coordinates MAC pore formation. High-resolution structures of C8 subunits have provided some insight into the function of the C8 heterotrimer; however, there is no structural information describing how the intersubunit organization facilitates MAC assembly. We have determined the structure of C8 by electron microscopy and fitted the C8α-MACPF (membrane attack complex/perforin)-C8γ co-crystal structure and a homology model for C8β-MACPF into the density. Here, we demonstrate that both the C8γ protrusion and the C8α-MACPF region that inserts into the membrane upon activation are accessible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement.

C8 is one of five complement proteins that assemble on bacterial membranes to form the lethal pore-like "membrane attack complex" (MAC) of complement. The MAC consists of one C5b, C6, C7, and C8 and 12-18 molecules of C9. C8 is composed of three genetically distinct subunits, C8α, C8β, and C8γ. The C6, C7, C8α, C8β, and C9 proteins are homologous and together comprise the MAC family of proteins...

متن کامل

Neoantigens of the membrane attack complex of human complement.

The membrane attack complex of complement is a fusion product of five complement proteins: C5b, C6, C7, C8, and C9. The complex causes complement-dependent cell membrane damage. It is assembled following complement activation both on the target cell surface and in the fluid phase. The isolated soluble complex, which has a molecular weight of one million, exhibited reduced expression of the anti...

متن کامل

Inhibition of the formation of the complement membrane-attack complex by a monoclonal antibody to the complement component C8 alpha subunit.

The effect of nine monoclonal antibodies to complement component C8 on the interaction of C9 with preformed cell-surface C5b-8 complexes and on the functional insertion of C8 into the membrane-attack complex (MAC) was investigated. None of the antibodies prevented C9 insertion into a preformed C5b-8 complex. One antibody (F1) directed to the C8 alpha subunit clearly inhibited formation of a fun...

متن کامل

The pore-forming protein (perforin) of cytolytic T lymphocytes is immunologically related to the components of membrane attack complex of complement through cysteine-rich domains

Structural, functional and immunological similarities between the ninth component of complement (C9) and the lymphocyte pore-forming protein (PFP, perforin) have recently been described (8-10). PFP is shown here to be immunologically related to all other components of the membrane attack complex (MAC) of human complement, namely, C5b-6, C7, C8, and C9. Polyclonal antibodies raised against purif...

متن کامل

Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels.

Erythrocytes are poorly lysed by homologous complement, whereas they are readily lysed by heterologous complement. This phenomenon had been attributed to an interference by the cell surface with the action of complement components C8 and C9. To isolate the responsible membrane constituent, detergent-solubilized human erythrocyte (EH) membranes were subjected to affinity chromatography by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 405  شماره 

صفحات  -

تاریخ انتشار 2011